スキップしてメイン コンテンツに移動

Glama.ai サイトについて

  Model Context Protocol (MCP) に対応した サーバー や ツールキット を集めたプラットフォームです。 これは、 AIアシスタント(特に大規模言語モデル、LLM) が、 ウェブ、ファイルシステム、データベース、外部サービス などの 現実世界のコンテキスト にアクセスし、 対話 できるようにするためのものです。 Glama.ai自体は、MCPプロトコル対応の オープンソースクライアント として機能し、複数のMCP互換サービスを接続・利用できる 集約型インターフェース の役割を果たします。 Glama.aiのMCPサーバーの主な特徴 Glama.aiのmcpサイトで提供されているサーバーは、特定の機能に特化しており、AIアシスタントにその機能を提供します。具体的な例と機能は以下の通りです。 サーバー/ツールキット名 主な機能の概要 MCP Webブラウザサーバー ヘッドレスWebブラウジング (任意のWebサイトへの移動、SSL検証バイパス)、 フルページコンテンツ抽出 (動的なJavaScriptを含む)、 Webインタラクション (クリック、テキスト入力、スクリーンショット)を提供します。 Crawl4AI MCP サーバー 高性能なWebスクレイピング 、 Webクロール 、 ディープリサーチ (複数ページにわたる調査)、 構造化データ抽出 などをAIアシスタントに提供します。 ヘルスケアMCPサーバー 医療情報 や ヘルスケアデータ (FDA医薬品情報、PubMed Research、臨床試験、医学用語など)へのアクセスをAIアシスタントに提供します。 MCP ツールキット ファイルシステム操作 (読み書き、検索)、 データベース統合 (MySQL, PostgreSQL, Redis)、 GitHub統合 、 コマンド実行 など、広範な開発者向けツールをAIに提供します。 これらのサーバーは、AIアシスタント(例えばClaude DesktopなどのMCPクライアント)に接続され、AIモデルが単なる知識ベースだけでなく、 外部の最新情報や動的なリソース を活用できるようにします。 Glama.aiのMCPサーバー一覧ページに表示されている「 security (セキュリティ)」「 license (ライセンス)」「 q...

Cursorとは

 AIコードエディタとしての「Cursor」は、Visual Studio Code (VS Code) をベースに開発された、AI機能を統合した次世代のプログラミングエディタです。AIとの連携に特化しており、開発の効率を大幅に向上させることを目的としています。


Cursorの主な特徴と機能

Cursorが提供する主なAI機能は以下の通りです。

1. コードベースを認識したAIチャット

エディタのサイドパネルに統合されたチャット機能を通じて、AIに質問や指示を出せます。

  • コンテキストの理解: プロジェクト内の全コードベースや特定のファイルを認識した上で回答を生成するため、「この関数は何をしているのか?」「このファイルとあのファイルの連携方法は?」といった質問に的確に答えられます。

  • ファイル指定: @に続けてファイル名を入力(メンション)することで、そのファイルの内容に絞った質問や指示が可能です。

2. コード生成と編集(Cmd/Ctrl + K)

キーボードショートカット(Mac: Cmd + K、Windows: Ctrl + K)を押すことで、エディタ内で直接AIにコードの生成や編集を指示できます。

  • 新規コードの作成: 何も選択せずにコマンドを実行し、タスク(例: 「ユーザーを認証するPythonの関数を作成して」)を入力すると、AIがコードを生成し、すぐに挿入できます。

  • 既存コードの修正: コードの一部を選択した状態でコマンドを実行し、指示(例: 「この関数を非同期処理に変更して」)を入力すると、AIが修正案を提示します。

  • バグ修正: エラーが発生している箇所でAIに修正を依頼し、適切な修正コードを提案させる機能もあります。

3. AIによる強力なコード補完(Copilot ++)

GitHub Copilotのような、入力中のコードの続きをAIが予測して提案する機能がデフォルトで搭載されています。

  • 次の行全体や、関数名・変数名などを予測し、薄い文字で表示します。

  • Tabキーを押すだけで、提案されたコードを一括で挿入できます。

4. ドキュメントの読み込み

外部ライブラリやフレームワークのドキュメントをAIに読み込ませ、そのドキュメントの内容に基づいた質問をしたり、コードを生成させたりすることができます。


VS Codeとの関係と移行

  • ベース: CursorはVS Codeを基盤としているため、基本的なUIや操作感はVS Codeと非常に似ています。

  • 拡張機能: VS Codeで使用していた拡張機能をそのままCursorにインポートして利用できます。

  • カスタマイズ: VS Codeと同じように、設定やキーボードショートカットのカスタマイズが可能です。


料金体系

Cursorには通常、無料で利用できるプランと、より高性能なAIモデルや高度な機能を利用できる有料プラン(ProやBusinessなど)が用意されています。プランによって、AIの利用回数制限や、利用できるAIモデル(例:GPT-4、Claudeなど)の種類が異なります。

このブログの人気の投稿

AWS Bedrock AgentCore とは

  AWS Bedrock AgentCore は、 AIエージェントを安全に大規模に構築、デプロイ、運用するためのモジュール型プラットフォーム です。 これはAmazon Bedrockの機能の一部であり、さまざまなフレームワーク(例:LangGraph、CrewAI、LlamaIndexなど)や基盤モデルと連携できることが大きな特徴です。開発したエージェントを本番環境に移行させるために必要なスケーラビリティ、信頼性、セキュリティ機能を提供します。 AgentCoreの主なサービスと機能 AgentCoreは、AIエージェントのライフサイクル全体をサポートする複数のコンポーネントで構成されています。 サービス名 主な機能 Runtime エージェントをデプロイ・ホスティングするための 安全なサーバーレス実行環境 。セッションの完全な隔離、低レイテンシーのリアルタイム処理、長時間実行タスクへの対応を提供します。 Gateway 既存の API や Lambda 関数をエージェントが利用可能な「ツール」に変換 し、エージェントと外部サービスとの接続を簡素化します。セマンティック検索によるツールのインテリジェントな発見も可能です。 Memory 短期記憶(会話コンテキスト)と長期記憶 をインフラ管理なしで維持し、エージェントにコンテキストを理解した体験を提供します。エージェントが記憶する内容を制御できます。 Identity エージェント向けの 安全でスケーラブルなIDおよびアクセス管理 。エージェントがユーザーに代わって、またはエージェント自身で、AWSリソースやサードパーティツールに安全にアクセスできるようにします。 Observability エージェントの動作をモニタリング、デバッグ、コンプライアンスサポートするための 可視化機能 を提供します。OpenTelemetryとの互換性もあります。 Built-in tools エージェントが複雑なタスクを実行できるようにする組み込み機能です。 - Code Interpreter : エージェントが生成したコードを 安全なサンドボックス環境 で実行できるようにします。 - Browser Tool : エージェントがウェブサイトのナビゲートやフォームの入力など、 複雑なウェブベースのタスク を人間に近い精度...

量子化の記号の意味

  生成AIモデルに見られる「4Q」や「K」「S」などの記号は、主に量子化(Quantization)と呼ばれるモデルの軽量化技術に関連する表記です。 量子化は、大規模言語モデル(LLM)などのモデルの重み(パラメーター)を、通常使われる高い精度(例:32ビット浮動小数点数)から、より低い精度(例:4ビットや8ビットの整数)に圧縮する技術です。これにより、モデルのメモリ使用量を削減し、推論速度を向上させ、より少ないリソース(特にVRAM容量の少ないコンシューマ向けGPUなど)での実行を可能にします。 量子化に関する主要な記号の意味 多くの軽量化されたモデルファイル(特に llama.cpp やその新しいフォーマットである GGUF 形式のモデル)で見られる記号は、量子化の ビット数 と、使用される量子化アルゴリズム(タイプ)を示しています。 1. ビット数を示す記号(例:4Q、Q4) 4Q や Q4 : 4ビット量子化 (4-bit Quantization)を意味します。 モデルの重みを4ビットのデータで表現します。 メモリを大幅に節約できますが、8ビット量子化に比べてわずかに精度が低下する可能性があります。 Q8 : 8ビット量子化 (8-bit Quantization)を意味します。 モデルの重みを8ビットのデータで表現します。 メモリ節約と精度の維持のバランスが良いとされ、ほとんど精度が低下しないことが多いです。 同様に、 Q2 (2ビット)、 Q3 (3ビット)、 Q5 (5ビット)、 Q6 (6ビット)などのバリエーションもあります。 2. 量子化のアルゴリズム(タイプ)を示す記号(例:K、S、M) ビット数の後に続くアルファベットは、使用された量子化の手法やバリエーションを示します。これらは特に GGUF 形式で採用されている llama.cpp による独自の最適化手法に関連します。 記号 意味 (GGUFにおける例) 特徴 K K-Quantization のバリエーション(例: q4_K 、 q5_K ) llama.cpp で導入された、より高い精度を保ちつつメモリ効率を改善するための新しい量子化アルゴリズムです。層ごとに異なるブロックサイズを使用するなどの最適化が組み込まれています。 S Small のバリエーション(例: q...

生成AIでゲームを作成してみた

 Gemini Cli を利用してゲームを作成してみました。 ゲームエンジンはGodotを利用。GUIでの設定も比較的わかりやすくテキストとして保存されるので、生成AIとの相性は良さそうです。 Gameページ